If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y-10y^2=0
a = -10; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-10)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-10}=\frac{-8}{-20} =2/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-10}=\frac{0}{-20} =0 $
| 216=6^(4x+11 | | g^2-14g=-48 | | 10x(6)=12 | | 1=p+-9 | | 6m+8=7+3m | | 5(2x-1)+6x=7-8x | | 7c-42=4c | | r+28=41 | | -2=q+-9 | | x+x+5x=49 | | 9x+3-5x=17 | | 3(z–4)=6z+3 | | 4m-8=3m+5 | | 13x=-13x | | -5(3x`-4)=-29+8x | | X^3-5x-30=0 | | 2x-3+5=5x-5 | | 10+x+3=3x-19 | | D=-9.2c+65.9 | | 23x13x+2.5=0.7-23x | | Z+1.1z-6=4(z+0.4) | | 21x-17=4(5x+5)-3 | | 8=c-7 | | 7x+12=16x-6 | | 6a+7=56-2a | | 3c-98=c+42 | | 4s+43=159 | | 5x-6+10x-14=11x-4 | | 3x^4-4x^3-12x^2-4=0 | | √X+27=x+7 | | 11x+8x-12=16x+9 | | -14x-20=16x+22 |